Cardiac membrane fatty acid composition modulates myocardial oxygen consumption and postischemic recovery of contractile function.
نویسندگان
چکیده
BACKGROUND Regular fish consumption is associated with low cardiovascular disease morbidity and mortality. Fish oils modify cardiac membrane phospholipid fatty acid composition with potent antiarrhythmic effects. We tested the effects of dietary fish oil on ventricular hemodynamics and myocardial oxygen consumption (MVO2). METHODS AND RESULTS Male Wistar rats were fed for 16 weeks on a reference diet rich in n-6 polyunsaturated fatty acids (PUFA), a diet rich in saturated animal fat (SAT), or a diet rich in n-3 PUFA from fish oil. Isolated working hearts were perfused with porcine erythrocytes (40% hematocrit) at 75 mm Hg afterload with variable preload (5 to 20 mm Hg) or with low coronary flow ischemia with maintained afterload, preload, and heart rate, then reperfused. MVO2 was low and coronary perfusion reserve high in n-3 PUFA hearts, and cardiac output increased with workload. The n-3 PUFA reduced ischemic markers-acidosis, K+, lactate, and creatine kinase-and increased contractile recovery during reperfusion. SAT hearts had high MVO2, low coronary perfusion reserve, and poor contractile function and recovery. Dietary differences in MVO2 were abolished by KCl arrest (basal metabolism) or ruthenium red (3.4 micromol/L) but not by ryanodine (1 nmol/L). Fish oil or ryanodine, but not ruthenium red, prevented ventricular fibrillation in reperfusion. CONCLUSIONS Dietary fish oil directly influenced heart function and improved cardiac responses to ischemia and reperfusion. The n-3 PUFA reduced oxygen consumption at any given work output and increased postischemic recovery. Thus, direct effects on myocardial function may contribute to the altered cardiovascular disease profile associated with fish consumption.
منابع مشابه
Salvatore Pepe and Peter L. McLennan and Postischemic Recovery of Contractile Function Cardiac Membrane Fatty Acid Composition Modulates Myocardial Oxygen Consumption
and Postischemic Recovery of Contractile Function Cardiac Membrane Fatty Acid Composition Modulates Myocardial Oxygen Consumption Print ISSN: 0009-7322. Online ISSN: 1524-4539 Copyright © 2002 American Heart Association, Inc. All rights reserved. is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Circulation doi: 10.1161/01.CIR.0000015604.88808.74 2002;105:...
متن کاملDietary fish oil reduces skeletal muscle oxygen consumption, provides fatigue resistance and improves contractile recovery in the rat in vivo hindlimb.
Dietary fish oil modulates skeletal muscle membrane fatty acid composition. Similar changes in heart membrane composition modulate myocardial oxygen consumption and enhance mechanical performance. The rat in vivo autologous perfused hindlimb was used to investigate the influence of membrane composition on skeletal muscle function. Male Wistar rats were fed either saturated fat (SF), n-6 PUFA (l...
متن کاملAcute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts.
Clinical studies have demonstrated improved myocardial recovery after severe ischemia in response to acute triiodothyronine (T3) treatment. We determined whether T3 improves the recovery of ischemic hearts by improving energy substrate metabolism. Isolated working rat hearts were perfused with 5.5 mM glucose and 1.2 mM palmitate and were subjected to 30 min of no-flow ischemia. Glycolysis, gluc...
متن کاملAmino acid substrate preloading and postischemic myocardial recovery.
During induced myocardial ischemia for cardiac surgery, myocardial stunning occurs and aerobic metabolism of glucose, fatty acids, and lactate is inhibited as anaerobic pathways predominate. Even following reperfusion, stunned myocardium uses oxygen and substrate inefficiently leading to poor functional recovery as less mechanical work is developed per oxygen utilized. Amino acids potentially c...
متن کاملImpaired contractile recovery after low-flow myocardial ischemia in a porcine model of metabolic syndrome.
Clinical metabolic syndrome conveys a poor prognosis in patients with acute coronary syndrome, not fully accounted for by the extent of coronary atherosclerosis. To explain this observation, we determined whether postischemic myocardial contractile and metabolic function are impaired in a porcine dietary model of metabolic syndrome without atherosclerosis. Micropigs (n = 28) were assigned to a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 105 19 شماره
صفحات -
تاریخ انتشار 2002